Candida Secrets
≡ Menu

How to Increase GABA and Balance Glutamate

Glutamate GABA Balance

You can’t really talk about how to increase GABA without talking about glutamate because they have a complex and interconnected relationship. Both are very important neurotransmitters that have a profound impact on many different aspects of our physical, mental, and spiritual health with the former being inhibitory and the latter being excitatory. Excitatory neurotransmitters stimulate brain cells, while inhibitory ones reduce stimulation. Like all neurotransmitters, too much or too little of either one leads to problems.

When all is working as it should, they keep each other in balance. However, there are many factors that can easily disrupt this delicate balance and result in too much glutamate and not enough GABA, which can wreak havoc on your mental and physical health.

What is Glutamate?

Organic Acids Test

Glutamate is one of your primary excitatory neurotransmitters. It has many important roles like stimulating your brain cells so you can talk, think, process information, learn new information, pay attention, and store information in short and long term memory. As a matter of fact, studies suggest that the more glutamate receptors you have the more intelligent you are. High levels of glutamate receptors are correlated with superior abilities in learning and memory. Unfortunately, they also correlated with an increased risk of stroke and seizures.

Although glutamate is one of the most abundant neurotransmitters found in the brain, it exists in very small concentrations. If the concentration level rises, then neurons become too excited and don’t fire in a normal manner. Glutamate becomes an excitotoxin when it is in excess; meaning it overstimulates brain cells and nerves and results in neurological inflammation and cell death.

An excess of glutamate is a primary contributing factor to a wide variety of neurological disorders like autism, ALS, Parkinson’s schizophrenia, migraines, restless leg syndrome, Tourette’s, pandas, fibromyalgia, multiple sclerosis, Huntington’s chorea, and seizures. As well as atrial fibrillation, insomnia, bedwetting, hyperactivity, OCD, bipolar disorder, anxiety disorders, and STIMS (repetitive self-stimulatory behaviors like rocking, pacing, body spinning, hand-flapping, lining up or spinning toys, echolalia, repeating rote phrases or other repetitive body movements or movement of objects that are commonly seen in autistic children), stiff person syndrome, and an increased risk of stroke.

Too much glutamate can also increase eosinophils (a particular type of white blood cell) which result in inflammation, impair blood vessels that lead to migraines and blood pressure irregularities, and impair other areas of the brain like the hypothalamus, hippocampal neurons, and Purkinje neurons which affect speech and language.

Mercury in the body becomes more toxic in the presence of high levels of glutamate.

Excess glutamate also makes cancer cells proliferate and increases tumor growth and survival.

Elevated levels of glutamate trigger the brain to release its natural opioids (endorphins/enkephalins) in order to protect the brain from damage, which can result in feelings of spaciness and eventually contribute to depletion of your natural opioids, and it also depletes glutathione levels, which is vital for detoxification, controlling inflammation and gut health. Additionally, glutathione also assists in protecting neurons from damage, so when it is depleted it is not available to do this job and thus contributes to more cell death.

High levels of glutamate may increase the survival of unfriendly microbes in the gut and contribute to problems like excess acid and heartburn.

Too much glutamate can lead to too much acetylcholine, and too much acetylcholine has a stimulating effect as well and puts one into a perpetual state of sympathetic stress with high levels of anxiety, fear, insomnia, restlessness, nervousness, etc.

What is GABA?

GABA, which is short for gamma-aminobutyric acid, is your primary inhibitory neurotransmitter. Its primary role is to calm the brain, slow things down, and relax you. One of the ways that it assists in this process is by increasing alpha wave production. It is also vital in speech and language. GABA puts the pause or space between words when you speak. The brain uses it to support sensory integration. Without adequate GABA production, our conversations would consist of lots of run-on sentences, slurred speech or loss of speech, and we would have trouble with comprehending language.

Your gastrointestinal tract is packed with GABA receptors and it is critical for contraction of the bowel. Insufficient levels can result in abdominal pain, constipation, and impaired transit. It also supports healthy levels of IgA, (antibodies that protect your gut and other mucous linings from harmful invaders) which means it contributes to immune health.

Insufficient levels of GABA result in nervousness, anxiety and panic disorders, aggressive behavior, decreased eye contact and anti-social behavior, attention deficit, problems with eye-focusing (like that seen in autistic children when both eyes are focused inward towards the nose or waver back and forth in a horizontal or vertical movement), chronic pain syndrome,s and much more. It may also contribute to GERD as it is needed to help regulate the lower part of the esophagus.

Low levels of GABA play a vital role in alcoholism, drug addiction, and cravings for sugar and carbs, as these substances will temporarily and artificially increase GABA, so one is unconsciously drawn to them. However, these substances also deplete neurotransmitters like GABA, serotonin, dopamine, and endorphins, so they will perpetuate the problem.

Gamma-aminobutyric acid is found in almost every area of the brain, but the hypothalamus contains a very high level of GABA receptors, so it is vital for its many functions like regulating sleep, body temperature, appetite, thirst, sexual arousal and desire, and action of the pituitary, HPA axis, and the autonomic nervous system. The primary role of the hypothalamus is to maintain homeostasis throughout the body, and without enough GABA production, this will not happen. GABA also binds to sub-receptors and activates secondary messengers that affect dopamine.

Like all neurotransmitters, GABA and glutamate play a vital role in regulating the autonomic nervous system (stress response system), maintaining the balance between the sympathetic and parasympathetic nervous systems. Too many excitatory neurotransmitters and we are in sympathetic nervous system mode and not enough inhibitory and we are unable to return to the parasympathetic mode. Thus, depletion of GABA can be a major contributing factor to sympathetic nervous system dominance and the many associated conditions like adrenal fatigue, insomnia, chemical sensitivities, chronic fatigue, panic attacks, anxiety disorders, etc. Maintaining sufficient levels is crucial in the recovery of these conditions.

GABA and Glutamate Balance

When GABA is low, glutamate is high and vice versa. So in order to increase gamma-aminobutyric acid, it’s not simply a matter of bringing it up, you must also focus on reducing the excess glutamate. The goal is to achieve balance. between the two. You might think of glutamate as the accelerator and GABA as the brakes. Both are equally important.

Glutamate (also referred to as glutamic acid) is actually the precursor to gamma-aminobutyric acid, and any excess is supposed to be converted automatically into GABA. This is the way it maintains balance; anytime glutamate levels start to build up too high, then it is converted to GABA to calm things down. However, sometimes the body cannot regulate glutamate properly for a variety of reasons which we will discuss, then glutamate can build up to excessively high levels.

An enzyme called glutamic acid decarboxylase (GAD) is needed for glutamate to make the conversion to GABA, but there are several factors that may interfere with this enzyme and impede the conversion process, which means a build up of glutamate and a decrease in the formation of GABA. Response time may be delayed or the capacity to convert may be impaired. It is believed that problems with the GAD enzyme may be the primary underlying issue that results in too much glutamate.

For example, the rubella virus, which is found in the MMR vaccination can decrease the activity of glutamic acid decarboxylase (GAD)by as much as fifty percent. Thus, one of the reasons children begin to exhibit some of the symptoms of autism immediately after vaccination because as we mentioned earlier GABA is critical in speech and brain function.

Other chronic viral infections interfere with the GAD enzyme and some microbes like streptococcus flourish in a glutamate-rich environment, thus many children with pandas and autism carry an ongoing infection with strep.

Methylation also plays a role in the GABA and glutamate balance in a variety of ways. For one, if there is impairment in the methylation pathway, then folate doesn’t get utilized and it can break down into glutamate. Additionally, if you are not methylating properly you may not be able to suppress microbes like viruses or make enough T cells to fight them off, which means they will linger around to interfere with the GAD enzyme.

Methylation may be impaired due to nutritional deficiencies, toxins, genetic mutations, Candida overgrowth, or SIBO. Methylation is also heavily influenced by the Krebs cycle and vice versa, so a problem in this cycle can also impede methylation, and consequently GABA production. The Krebs cycle can also be impaired by Candida overgrowth, as well as bacterial overgrowth.

Additionally, the syntheses of GABA itself is also dependent on the Krebs cycle, so it is vital in more ways than one that this system be working properly to have sufficient levels. The Krebs cycle can become impaired in a variety of ways like a deficiency in B vitamins or the presence of heavy metals, and toxins from bacteria or Candida.

The GAD enzyme is generated by the pancreas, so problems with the pancreas may impair production of the enzyme.

People with type 1 diabetes produce antibodies against the GAD enzyme, which may impair its response time or ability to convert.

Lead interferes with GAD activity. Lead also inhibits another enzyme involved in the heme synthesis pathway which results in an accumulation of an intermediate that competes with GABA.

Some substances like allylglycine (a derivative of glycine) are potent inhibitors of GAD.

B6 is also needed as a cofactor with GAD to convert glutamate into GABA, so if B6 levels are not sufficient, the conversion won’t happen either. Much of the population is deficient in B6. However, supplementing with B6 will also increase CBS gene production, so if there is an issue here, one should proceed with caution.

There are two isoforms of GAD (GAD67 and GAD 65) and they are encoded by two different genes known as (GAD1 and GAD2). Genetic defects in GAD1 or a decrease in activity of GAD1 due to other reasons lead to a decrease in glutamate and a decrease in GABA. GAD1 SNP variation rs3828275 is associated with panic disorders, traumatic brain injury, post-traumatic seizures, and depression, while a genetic variation in SNP rs12185692 is associated with neuroticism, anxiety disorders, and major depression.

Additionally, glutamate receptors also pull in other excitatory substances into the cell beside glutamate, including all of the following:

  • Aspartate (can also be converted into glutamate)
  • Aspartame
  • Aspartic acid
  • Glutamate
  • Glutamic acid
  • Glutamine
  • Monosodium glutamate (MSG)
  • Cysteine (But not n-acetylcysteine. However, does contain sulfur and too much sulfur can be counterproductive as well, so should be used mindfully.)
  • Homocysteine

Therefore, each of these can bind with glutamate receptors, which also results in excessive stimulation and contributes to the imbalance in GABA and glutamate and the wide array of symptoms that are generated. The more glutamate receptors you have the more excitatory substances that will be pulled in.

Citrate or citric acid has the potential to be neurotoxic in the very sensitive because most citrate is derived from corn, which can result in trace amounts of glutamate or aspartate during processing. The majority of vitamin C supplements are derived from corn and should be avoided for the same reason, look for a brand derived from another source. Additionally, pretty much all corn is genetically modified, which means it is loaded with glyphosate, which would also elevate glutamate, so another reason to avoid corn-based supplements.

To complicate things further, glutamate has the ability to bind with six other receptors in the brain, like the NMDA receptor, which assists in delivering calcium to the cell and plays a vital role in memory function and synaptic plasticity. Calcium is used by glutamate as the agent that actually inflicts the harm on the cell. So, if there is an excess of calcium in the body for any reason, it too will contribute to the GABA and glutamate imbalance.

Glutamate and calcium together cause ongoing firing of the neurons, which triggers the release of inflammatory mediators, which leads to more influx of calcium. It becomes a vicious cycle that results in neural inflammation and cell death. Glutamate has been described as the gun, while calcium should be seen as the bullet, says Dr. Mark Neveu, a former president of the National Foundation of Alternative Medicine. It’s important to note that activation of the NMDA receptor also involves glycine, D-serine or D-alanine, which means either one of these could allow for more influx of calcium as well.

Magnesium can help regulate calcium levels and so can zinc. However, higher doses of zinc (more than 40mg per day) can also activate the release of glutamate through non-NMDA glutamate receptors, so one must exercise caution with zinc. However, if calcium is excessively high, other herbs or nutrients may be used to bring it down, like lithium orotate, Boswellia or wormwood. Lithium, as well as iodine and boron, can also assist in lowering glutamate. Calcium intake in food may need to be reduced or limited if calcium is too high. Magnesium is also able to bind to and activate GABA receptors.

If one exhibits low levels of calcium, Dr. Amy Yasko recommends using nettle or chamomile to increase calcium levels, rather than supplementation of calcium itself, if we are dealing with someone who has an imbalance in GABA and glutamate. Vitamin K2 and D would be important as well in combination with the calcium to help with absorption. If supplemental calcium is used it should be accompanied by magnesium, which will help control the excitotoxic activity.

Glycine can be inhibitory or excitatory, and in people who tend to lean towards excess glutamate it typically becomes excitatory, so it may need to be avoided.

Glutathione contains glutamate, so supplementing too heavily may contribute to excess glutamate.

Vitamin D increases calcium levels, and as we established, elevated calcium levels can increase glutamate, so caution may be necessary with vitamin D supplementation.

The amino acid taurine increases the GAD enzyme and consequently GABA levels. Additionally, taurine doubles as an inhibitory neurotransmitter and can bind directly to GABA receptors, so it can help provide balance naturally in that manner as well. Higher levels of any inhibitory neurotransmitter help lower high levels of any excitatory neurotransmitter. Taurine is found in high levels in the brain and cardiac tissue, indicating its importance in these areas. Taurine is found most abundantly in seafood and animal protein, so it is often deficient in one’s diet.

If taurine is deficient, then the GAD enzyme may be low as well, therefore, supplementing with taurine can be used to manage the GABA and glutamate balance and protect from neuron death. However, there are a couple of genetic polymorphisms (particularly CBS and SUOX gene mutations) that can result in negative effects from taurine supplementation, because these mutations result in excess levels of sulfur in the body and taurine is sulfur based. If one has these gene mutations, they may also need to avoid other supplements that are high in sulfur and limit sulfur based foods. These mutations can also impair ammonia detoxification as well. B6 and SAMe increases the activity of these gene mutations, so supplementation with these substances may compound the problem too. Because of the GABA shunt, which can convert GABA back into glutamine, which is then converted into glutamate, taurine supplementation may increase glutamate in some people.

Additionally, Candida produces a toxin called beta-alanine that competes with taurine for reabsorption in the kidney, and causes taurine to be wasted in the kidneys and excreted through the urine and beta alanine is absorbed instead. Therefore, taurine levels may be insufficient, which can contribute to less GABA activity. Not only that, taurine can combine with magnesium to form magnesium taurate and the two of them may be eliminated together, which can lead to magnesium deficiency. Insufficient levels of magnesium are going to result in excessive levels of calcium, which as we established earlier, will increase glutamate firing.

Serotonin, another vital inhibitory neurotransmitter is also needed in order for GABA to work properly. If one is deficient in serotonin, then even if you have sufficient levels of gamma-aminobutyric acid, it may not be able to perform its inhibiting effects adequately.

A diet that does not contain enough of the nutrients needed to make inhibitory neurotransmitters like animal protein and fat plays a vital role in an imbalance between glutamate and GABA. Furthermore, proper transmission of any neurotransmitters can’t happen without adequate levels of fat and most people are not consuming enough fat in their diet. Additionally, many foods and substances like sugar, whole grains, legumes, any high starch food, caffeine, chocolate, artificial sweeteners and flavorings, food additives and dyes can deplete GABA levels or disrupt transmission, so they should be removed from the diet. Grains (including whole grains) can bring about an excitotoxic effect by causing excessive glutamate formation in some people.

A ketogenic diet has been found to favor GABA production and be exceptionally beneficial in the treatment of many conditions associated with excess glutamate like seizures and epilepsy. A ketogenic diet increases the GAD enzyme and neurons can use ketones produced from ketosis as a precursor to GABA. Additionally, glutamate can be turned into GABA or aspartate. Aspartate is also an excitotoxin in excess, with similar effects as elevated glutamate. A ketogenic diet encourages glutamate to become GABA, rather than aspartate. Therefore, following a low-carb keto/ Paleo diet would be the ideal diet for maintaining balance between gamma-aminobutyric acid and glutamate. You may want to note, that some fish like mackerel have high levels of naturally occurring GABA

Environmental toxins like pesticides, herbicides, air pollution, heavy metals, and chemicals found in your common everyday household cleaning products, cosmetics, perfumes and colognes, air fresheners, personal care products, dish soap, laundry soap, and fabric softeners, all deplete and disrupt normal production and function of all neurotransmitters. Therefore, another critical component for maintaining sufficient levels of GABA is to reduce your exposure to these toxins by living an environmentally friendly lifestyle and eating organic.

Within the category of toxins, pesticides have the most profound impact on the brain. They are neurotoxins that can disrupt acetylcholine, dopamine, serotonin, endorphins, oxytocin, histamine, glutamate, norepinephrine, and GABA. Many pesticides primary mechanism of action is inhibition of GABA, meaning the pesticide achieves its goal or its effect on the target by inhibiting GABA. It is designed specifically for this action.

GABA Supplementation

Supplementing with GABA is a popular suggestion among many practitioners. However, I frequently work with people who get a stimulating effect from supplementation and I get a stimulating effect myself, so be sure to monitor your response. GABA itself can be converted back into glutamine, which is then converted back into glutamate through a metabolic pathway called the GABA shunt. So GABA supplementation can end up increasing glutamate in some people as well.

According to Dr. Datis Kharazzian, a brain expert, if you have any effect from GABA, (positive or negative) that means you have a leaky brain. In his book, Why Isn’t My Brain Working, he explains that in a healthy brain, the junctions in the blood-brain barrier only permit nanoparticles to pass through. GABA “exceeds the nanoparticle size and does not have a blood-brain barrier transport protein.” It should not be able to cross the blood-brain barrier. If it does, then this suggests there is a leaky brain.

As a matter of fact, Dr. Kharrazian uses GABA supplementation as a screening tool to determine whether one has a leaky brain or not, calling it the GABA Challenge Test. He also states you shouldn’t take GABA supplementation, even if you have a positive effect, “because you risk shutting down your GABA receptor sites.” If you have no effect from GABA, this is a good sign, you most likely to do not have a leaky brain. If leaky brain is present, then many other harmful substances can be crossing the blood-brain barrier and causing additional problems.

The toxins created by Candida can stimulate surges of glutamate production. Hundreds of other toxins can produce this same surge in glutamate activity, including mold toxins, bacterial toxins, Lyme, and organic solvents. Dr. Rick Sponaugle, a brain expert, states that even the toxins released by bacteria in your mouth that cause gingivitis and periodontal disease can increase glutamate activity and lead to a wide array of symptoms like anxiety. I can attest to this personally, I have experienced high anxiety from gingivitis. If I do not get my teeth cleaned regularly the bacteria in my mouth will cause anxiety. So it’s important to note, that many of the symptoms of Candida overgrowth can be caused by an excess of glutamate.

Glutamate and insulin have an intimate relationship. On one hand, high glutamate will trigger the release of insulin, which means insulin will then lower glucose levels; but glucose is needed to help regulate glutamate levels at the synapses, so if it goes to low, then glutamate is going to increase. This means hypoglycemia or low blood sugar will result in both triggering high levels of glutamate and impairing your ability to reduce the build-up.

Therefore, not eating foods that spike insulin and keeping blood sugar levels stable are a vital element of keeping glutamate and GABA in balance. At the same time, keeping your glutamate balanced would be a vital aspect of keeping your insulin levels healthy, which would be important if you are trying to lose weight, have insulin resistance, type 2 diabetes, compulsive overeating, obesity, and the many other insulin-related conditions. Again, demonstrating how a low-carb Paleo diet would be the most beneficial diet for this issue.

Some people have a genetic mutation (VDR/Fok gene) that impairs their ability to regulate their blood sugar levels sufficiently. Dr. Amy Yasko, says there are a variety of pancreatic supplements that may be needed to support this issue.

There are many drugs (e.g. benzodiazepines and nonbenzodiazepine sedatives) that target your GABA receptors like Ativan, Xanax, Klonopin, Valium, and Neurontin (Gabapentin) and others. These drugs look similar in chemical structure as gamma-aminobutyric acid so they can fit in your GABA receptors, which artificially stimulates them, but they do not actually increase production. Therefore they do not address the underlying problem of not producing enough because there must be some level of GABA present in order for these drugs to have an effect. Furthermore, anytime an exogenous (from outside the body) substance is used to artificially stimulate a neurotransmitter the brain responds by reducing production or responsiveness, which results in more depletion of the neurotransmitter, which in this case is GABA. Therefore, any drugs that target GABA receptors or manipulates GABA or glutamate, will inhibit your ability to acquire and maintain balance.

Benzodiazepine use can cause long-term and even permanent damage to GABA receptors. In all cases, it is difficult to reverse and often a life-long recovery process. The longer they are used and the higher the dose the more damage that is done and the harder it is to reverse. However, with the proper changes in diet and lifestyle, the damage can be managed and a high level of comfort can be achieved. I am a recovered alcoholic and benzo addict; used them for nearly ten years and have been clean for more than 30 years. So my knowledge, experience, and passion on this topic are both personal and professional. The effects of nonbenzodiazepine sedatives like Ambien and others would be similar.

This is also true of herbs that are used to increase GABA levels such as Valerian Root, Kava Kava, or any other herb used for this purpose. The brain responds to herbs that manipulate neurotransmitter levels in the same manner as a pharmaceutical – it will downregulate responsiveness or production of GABA, thus making the problem worse.

Some people may have a genetic predisposition to have more glutamate receptors than others, and the more glutamate receptors you have, the more you will take in. In this case, you will likely be someone who always tends to lean toward excess glutamate activity and will need to engage in life-long ongoing monitoring and maintenance to prevent overstimulation, cell death, and neurological symptoms. However, if there is excess glutamate in the system due to genetic mutations, methylation problems, etc., then more glutamate receptors will be generated as well.

As is true for all neurotransmitters, ensuring that you get adequate sleep is vital for normal function because sleep deprivation causes neurons to lose sensitivity to neurotransmitters, thus impairing communication.

Excitotoxins in the Diet

One of the biggest contributors to an imbalance in GABA and glutamate is the presence of excitotoxins in the diet. Many foods and nutritional supplements contain the excitotoxins (glutamate, glutamic acid, glutamine, aspartate/aspartic acid, and cysteine) or they contain substances that can prompt the body to produce them. These foods and substances should be avoided by anyone trying to balance their GABA and glutamate levels and anyone who tends to generally lean towards excess glutamate.

Dr. Amy Yasko explains that “excitotoxins in food overexcite neurons to the point where they become inflamed and begin firing so rapidly they become exhausted or die.” This results in a wide array of neurological symptoms that are found in autism, OCD, anxiety disorders, insomnia, hyperactivity, attention deficit, nervousness, aggressive behavior, restless leg syndromes, Tourette’s, migraines, seizures, and more. Excitotoxins increase other excitatory neurotransmitters as well like norepinephrine, which compounds these symptoms.

Dr. Amy Yasko, an expert in autism, tells parents with children who have autism that if they take only one step in her recovery program that the most important element is to eliminate excitotoxic foods that increase glutamate levels. This one step alone can provide dramatic improvements in STIMS. Thus, demonstrating the profound impact that excitotoxins have on brain function.

Most Common Sources of Excitotoxins

Monosodium glutamate. Keep in mind that MSG is found in numerous places you may not be aware of like most processed food, fast food restaurants, and it may be a binder in medications, supplements, prescription drugs, over the counter drugs, IV fluids, vaccines, and as a growth enhancer sprayed on crops of food and produce called Auxigrow.

Aspartame (Nutrasweet)

Glutamate and aspartate are naturally occurring in wheat gluten, hydrolyzed yeast, and milk casein (which means any dairy product that contains casein has the potential for problems, but particularly cheese, which is a concentrated form of casein).

Other common food sources that contain excitotoxins include, hydrolyzed protein, hydrolyzed oat flour, or anything hydrolyzed, sodium caseinate, calcium caseinate, disodium caseinate, autolyzed yeast, yeast extract or anything else autolyzed, gelatin, glutamic acid, carrageenan or vegetable gum, guar gum, bouillon, kombu extract, anything malted, maltodextrin, many seasonings and spices, soy extract, soy protein or soy protein concentrate, or soy protein isolate, and soy sauce, textured protein, whey protein, whey protein concentrate or isolate.

The words natural flavor or natural flavoring on a package typically means it contains MSG or some other excitotoxin because they are used to stimulate your taste buds and artificially intensify the flavor.

Other foods or substances that contain excitotoxins and can damage nerves include anything fermented, protein fortified, or ultra-pasteurized or vitamin enriched, corn syrup, bodybuilder formulas or protein formulas, caramel flavoring or coloring, flowing agents, dry milk, L-cysteine, egg substitutes, cornstarch and some brands of corn chips, citric acid if it is processed from corn, certain brands of cold cuts, hot dogs and sausages (even the ones in health food stores), many canned foods, pectin, pickles, any processed food, meats in mainstream grocery store are often injected with them, tofu or other fermented soy products, xanthan gum or other gums.

Any nutritional supplement that contains glutamine. Glutamine is often recommended to heal the gut and increase GABA, but it first increases glutamate, and if you aren’t converting your glutamate to GABA for any of the many reasons we listed above, then you end up with nothing but a bunch of excess glutamate. Anyone who has an issue with excess glutamate should typically avoid supplementation with glutamine. Glutamine and glutamate convert back and for into one another.

Furthermore, some bacteria in the gut convert glutamine into glutamate. If one has an excess of these types of bacteria, which could be the case in SIBO, then glutamine supplementation may contribute to excess glutamate. Additionally, some gut bacteria eat glutamine, so in people who have SIBO, glutamine can cause proliferation of SIBO, and toxins from SIBO can lead to excess glutamate.

It can also be a matter of potency. For example, I can consume yogurt every once in a while with no glutamate problems, but if I consume whey protein then I have immediate excess glutamate. This is because the level of glutamate in whey protein is much more concentrated than it is in yogurt. Anything that has a concentrated level of glutamate is going to be more problematic than something that has less potency.

Bone broth, which is commonly recommended for healing the gut is very high in glutamate, especially chicken bones. For example, I get an instant migraine from taking a little sip of bone broth from the glutamate content. I can’t even cook chicken with the bone, or the chicken will absorb the glutamate and give me a migraine. I can sometimes eat beef or buffalo cooked with the bone, but it varies. I do best if the bone is removed. So you should experiment to see if your meat cooked with bone is contributing to your glutamate imbalance and be aware that bone broth will increase your glutamate levels. Just slow cooking meat for a long time, particularly braising, can increase glutamate.

Some common foods that are particularly high in glutamate are parmesan cheese, Roquefort cheese, tomato juice, grape juice, and peas. Walnuts, mushrooms, broccoli, tomatoes, and oysters are moderately high as well.  Chicken and potatoes to a much lesser degree. If you eliminate all the other high glutamate substances, then you may not have a need to reduce some of these health-enhancing foods like broccoli, walnuts, and chicken. However, if your glutamate levels are really elevated, then these foods may be problematic as well, at least until you get levels reduced to some degree.

Protein powders, amino acid formulas, and collagen are high in glutamate. Branch chained aminos (leucine, isoleucine, and valine) taken in high concentrations can be excitotoxic.

Other Contributing Factors to Imbalance

There are other genetic polymorphisms that may inhibit your ability to synthesize GABA itself, besides those we discussed that involve the GAD1 gene.

Up-regulation of the CBS gene, which increases alpha-ketoglutarate production can lead to excess glutamate.

Conversion of glutamate to GABA by glutamate decarboxylase (GAD) is inhibited by copper, so make sure copper levels are not elevated.

Pyroluria is a genetic problem in hemoglobin synthesis that can result in deficiencies in B6 and zinc, both of which are critical for the production of GABA and the management of excess glutamate. Therefore, if you have pyroluria it can indirectly contribute to a GABA and glutamate imbalance.

Chronic stress is a major contributing factor to depletion of GABA and other inhibitory neurotransmitters. High levels of inhibitory neurotransmitters like gamma-aminobutyric acid and serotonin are needed to modulate the stress response system. They help the mind and body return to the parasympathetic state when the stressful event is over. If the stressful event is never over, then they are called upon repeatedly and over time this will drain their levels. Therefore, managing chronic stress is a vital element for the GABA and glutamate balance.

Childhood abuse or trauma alters GABA receptors, resulting in less GABA function, and this is carried with the survivor into adulthood. Survivors of abuse also have lower levels of serotonin and dopamine.

Vitamin K is very important for GABA and glutamate balance as well, as it is needed for healthy calcium metabolism where it reacts with glutamate and calcium to deliver calcium to the bones and teeth, and it prevents accumulation of excess calcium which would contribute to cell death. Vitamin K is a fat-soluble vitamin; however, unlike other fat-soluble vitamins, it is not stored in the body and must be consumed on a daily basis. Vitamin K1 is found in leafy greens. Typically, vitamin K2 is produced when the friendly flora in our gut process leafy greens, but if dysbiosis is present or you’re not eating leafy greens, then vitamin K may be insufficient. But vitamin K2 is also found in a variety of food sources like dairy and animal protein. Grass-fed butter is a good source of Vitamin K2.

The pancreas uses Vitamin K abundantly for sugar regulation. In addition to the brain, the pancreas is also very vulnerable to accumulation of excessive glutamate or other excitotoxins, which will further impair regulation of sugar. As we discussed previously, too much or too little insulin or glucose can both contribute to excess glutamate, therefore, keeping glutamate and GABA in balance is critical for the health of the pancreas and all its functions and the health of the pancreas is vital for maintaining the balance.

You have most likely seen the substance called phenibut for increasing GABA. I am not in favor of using it because it is an artificial means of stimulating gamma-aminobutyric acid, and remember any artificial stimulation leads to depletion. Many people report that they get addicted to phenibut, thus demonstrating that it is indeed too stimulating which will perpetuate depletion. As I see it, phenibut is an addictive mind-altering drug.

Another popular choice for increasing GABA is l-theanine. L-theanine is a glutamate analog. Which means if you fall in the category of people who is having problems converting your glutamate to GABA, this could lead to excess glutamate rather than GABA. Additionally, l-theanine is derived from tea or mushrooms, it is an artificial means of supplementing glutamate, not natural. Furthermore, it could have traces of caffeine or fungi from its original source, which could be problematic as well. Therefore, l-theanine may work for some but have the opposite effect for others. I prefer to avoid it unless I am working with someone who is detoxing from drugs and alcohol, in which case the need may outweigh the risks, but glutamine or lithium may be better choices.

Many manufacturers of nutritional supplements and health care practitioners have no knowledge or are not fully educated on the topic of glutamate. Therefore, it is very common for nutritional supplements, even some of the more respected brands, to contain excitotoxins. If you tend to lean towards excess glutamate, you must be very careful with your nutritional supplements.

It’s also important to take note that it is not possible to eliminate every single source of glutamate or other excitotoxins, nor do you want to. Remember that glutamate is vital for proper brain function in small concentrations; the goal is to prevent excess. Preventing overstimulation, cell death and neurological symptoms may sometimes be a matter of moderating accumulation. The more foods or substances that one consumes that are excitotoxic the more it builds up. You may get away with a little consumption, but if consumption is high then it pushes you over the edge of the cliff and symptoms present.

One of the greatest aspects of GABA is that it also opposes norepinephrine, your other primary excitatory neurotransmitter which is also important for stimulation, but it sets off the stress response system. Like glutamate, norepinephrine is also toxic to the brain when it is in excess. Excess norepinephrine can produce many of the same kinds of symptoms that excess glutamate produces and it can sometimes be hard to tell the difference between the two. Fortunately, when you focus on increasing your gamma-aminobutyric acid then you help reduce excess norepinephrine in addition to excess glutamate.

In Summary

So, to summarize the steps that should be taken to increase GABA, it is vital that one is eating the right diet, avoiding excitotoxins, managing stress, avoiding environmental toxins, addressing nutritional deficiencies and/or genetic polymorphisms, getting adequate sleep, supporting a healthy gut, and possible supplementation. It’s very important that you don’t just start supplementing with everything you’ve read will be helpful, as this usually backfires and you get the exact opposite effect. The sicker you are the slower you need to go with supplementation. Only take one thing at a time and monitor your response before trying something else. Some people must start with very minute doses.

Working with neurotransmitters is a complex and difficult process that is best done with a practitioner who has expertise in this area. However, finding someone who has enough expertise to cover all the bases we have presented on this page is very difficult as well, so you serve yourself better by being very well informed before beginning the journey. Please note that although I know a great deal, I do not know everything either. I’m always in the learning process and this page is updated periodically as new knowledge comes to light. However, if you need help lowering your glutamate and increasing GABA, contact me today for a comprehensive consultation and get on the right road to building a strong self-care plan that will help you achieve your goals.

Need Help Balancing Your GABA and Glutamate?

Holistic Health Coaching with Cynthia


Abshire VM1, Hankins KD, Roehr KE, DiMicco JA. Injection of L-allylglycine into the posterior hypothalamus in rats causes decreases in local GABA which correlate with increases in heart rate. Neuropharmacology. 1988 Nov;27(11):1171-7.

L. Amoreaux WJ, Marsillo A, El Idrissi A. Pharmacological characterization of GABA receptors in taurine-fed mice. J Biomed Sci. 2010;17 Suppl 1:S14

El Idrissi A, L?Amoreaux WJ. Selective resistance of taurine-fed mice to isoniazide-potentiated seizures: in vivo functional test for the activity of glutamic acid decarboxylase. Neuroscience.2008 Oct 15;156(3):693-9.

Richard W Olsen and Timothy M DeLorey. GABA Synthesis, Uptake and Release – Basic Neurochemistry. 1999

Todd D. Prickett and Yardena Samuels. Molecular Pathways: Dysregulated Glutamatergic Signaling Pathways in Cancer. Clinical Cancer Research August 15, 2012 18; 4240

Dr. Amy Yasko, Autism: Pathways to Recovery. Neurological Research Institute, LLC 2004, 2007, 2009

Dr. Rick Sponaugle. Anxiety Disorder Causes

Datis Kharrazian. Why Isn’t My Brain Working?: A revolutionary understanding of brain decline and effective strategies to recover your brain’s health. Carlsbad California. Elephant Press (2013)

Möykkynen, Uusi-Oukari M, Heikkilä J, Magnesium potentiation of the function of native and recombinant GABA(A) receptors. Neuroreport. 2001 Jul 20;12(10):2175-9.

Contrusciere, Paradisi S, Matteucci A, Malchiodi-Albedi F. Neurotox Res. 2010 May;17(4):392-8. doi: 10.1007/s12640-009-9115-0. Epub 2009 Sep 15. Branched-chain amino acids induce neurotoxicity in rat cortical cultures.

Christopher Lane. Brain Damage from Benzodiazepines. Nov 18, 2010

H. Ashton. Protracted withdrawal syndromes from benzodiazepines.Journal of Substance Abuse Treatment. 1991;8(1-2):19-28.

Yaffe Kristine, Boustani Malaz. Benzodiazepines and risk of Alzheimer’s disease. BMJ 2014; 349 :g531

Karen Kurtak, LAc. Adventures in Glutamine: How Side Effects to Glutamine can Help You Identify the Root of Gut Issues.

{ 152 comments… add one }
  • PC May 29, 2014, 5:20 am

    Good article, very thorough.

    I definitely have glutmatae problems. I first noticed a big difference by cutting out sources of glutamate such as yeast extract from processed foods. Then I tried eating chicken broth and discovered that gave me a horrible reaction.
    I’ve tried lots of different protein powders because I have difficulty digesting meat, but all to no avail. They cause a pronounced glutmate effect.

    What to do? It seems such a depressing situation when you can barely eat any foods and react to everything. I also have histamine issues. Seems like supplements are the only way forward with these issues. I already follow an autoimmune diet which is mostly just meat and vegetables.

  • Admin - Cynthia Perkins May 31, 2014, 7:13 pm

    Hi PC,

    I would take a look at the following article on problems with eating meat and see if any of these apply to you or could be helpful and just keep moving forward. Supplements can be helpful, but they can not replace your meals. The focus needs to be on increasing your ability to eat meat.

    Additionally, I would also try and change your mindset. Allowing yourself to interpret the situation as depressing is counterproductive. Try and view it as learning experience, a journey of self-discovery, and a gift. Everything we learn about ourselves, our bodies and how we interact with food is a gift, because it enables to make changes that can improve the quality of our lives. Take a look at the following page as well.


  • Amanda December 12, 2014, 3:57 pm

    I recently just came off of a benzodiazepine after two years of use for anxiety and trauma. I only recently discovered the terrible effects of the benzos on the GABA receptors and am now trying everything in my power to correct this issue since I have stopped taking it. As expected, I’m having a pretty difficult time with muscle soreness/fatigue/ear ringing/head pressure/anxiety/rumination/etc. Is there anything that you can suggest for a starting point in building the GABA receptors back up, or is this something that will only come in time? Thank you!

  • AC January 1, 2015, 10:54 am

    Hi Cynthia,
    I was prescribed klonopin for insomnia and OCD, the latter of which I believe was induced by tamoxifen and low myo-inositol. Now I am trying–with a good doctor’s help–taper from valium. I thought bone broth (homemade) would be great for me. Do you have any recommendations about what I should eat to maximize healing and minimize side-effects while I taper? Thank you!

  • Admin - Cynthia Perkins January 5, 2015, 10:26 pm

    Hi AC,

    As mentioned above, the diet I support is the Paleo diet. You can learn more on the following page.


  • Admin - Cynthia Perkins January 5, 2015, 10:30 pm

    Hi Amanda,

    Well the post above is pretty in depth about what needs to be done. I’d just start working through it all. The first place one always needs to start is the diet, and of course staying away from all the other things that increase glutamate. Everything on the page would apply.


  • Donna January 30, 2015, 8:19 pm

    Hello Cynthia,

    With a CBS mutation of +- should one avoid B6 supplement?

    Thank you.

  • Admin - Cynthia Perkins February 2, 2015, 1:10 pm

    Hi Donna,

    I am not an expert on CBS mutations. However, my understanding is that B6 will speed up CBS activity. Dr. Amy Yasko recommends addressing the CBS mutation before supplementing with B6. You can read what she has to say on the subject on the following page.


  • deadhappy February 22, 2015, 1:11 pm

    I have suffered many of paradoxical reactions to calming supplements that you mention here. I am also victim the to the idea of popping supplements based on extremely thin and uninformed, one size fits all recommendations. After thousands and thousands of dollars and amateur research hours I am confident that this one of the most thorough and well written articles I have read. Thank you so much for taking the time to share this.

  • Admin - Cynthia Perkins February 26, 2015, 9:23 pm

    Thank you and you’re welcome.

  • Lisa April 22, 2015, 1:02 pm

    I read in this article that you are not in favor of artificial means such as L – theanine or phenibut, bc it discourages natural gaba production; however, earlier in the article you said that supplementing with gaba itself may be helpful. I was wondering if you could explain the reason behind this. Does using straight gaba have less of an effect on natural gaba production and/or receptor down regulation? Also, doesn’t using 5htp have the similar negative consequence of discouraging natural serotonin production and/or down regulating serotonin receptors? Thanks in advance for your time!

  • Cristina May 4, 2015, 6:50 pm

    Does Zoloft affect Gaba or glutamate levels?

  • Nancy Preston May 11, 2015, 7:52 am

    brilliant article. thank you!

  • Admin - Cynthia Perkins May 20, 2015, 9:23 pm

    Hi Cristina,

    Zoloft targets serotonin, which means it depletes serotonin. As stated above, serotonin is needed in order for GABA to work properly. If one is deficient in serotonin, then even if you have sufficient levels of gamma-aminobutyric acid, it may not be able to perform its inhibiting effects adequately. Dopamine also needs serotonin to work properly, so low serotonin can also cause problems with dopamine.

    Additionally, even though a medication targets one specific neurotransmitter, it really is not possible to affect one neurotransmitter without having some impact on the others.

    You can read about how Zoloft depletes serotonin on the following page:


  • Admin - Cynthia Perkins May 21, 2015, 1:36 am

    Hi Lisa,

    I do not support the use of l-theanine or phenibut, because they are artificial means of increasing GABA. Additionally l-theanine is going to increase glutamate. Taking GABA itself is a natural means of increasing it – it does not cause down regulation or less responsiveness. I do not feel as strongly against l-theanine as I do phenibut. Many people develop tolerance to and get addicted to phenibut; it appears to affect the brain in the same manner as pharmaceutical based benzodiazepines. Phenibut may also stimulate dopamine receptors as well, so may cause problems here as well. As I see it, phenibut is an addictive drug.

    No, 5htp does not have the same effect on serotonin as taking antidepressants. Antidepressants increase serotonin artificially. Artificial stimulation of neurotransmitters causes down regulation of production. 5htp gives the brain the substance it needs to make serotonin. It encourages production – it does not down regulate production or responsiveness. Two completely different processes.


  • Steve May 31, 2015, 2:35 pm

    Does lithium really reduce glutamate levels?


  • peter June 4, 2015, 6:50 pm

    “EAdditionally l-theanine is going to increase glutamate.” This puzzles me because literally everything else I have read suggests theanine LOWERS glutamate levels, not increases them?

    And as for taurine, if it works by binding to GABA receptors as you say in the article, isn’t it going to eventually downregulate them the same way benzos do? If not, why not?


  • Andrew June 8, 2015, 12:51 pm

    Would you consider Gaba reuptake inhibitors to be safe alternatives to GABA agonists?

  • Admin - Cynthia Perkins June 10, 2015, 3:04 pm

    Hi, Peter,

    Yes, it is confusing. Let me explain.

    l-theanine is an analog of glutamine. Glutamine is first converted into glutamate. Therefore l-theanine is going to be glutamate before it becomes GABA. Glutamate is the precursor to GABA. As discussed in great detail above, if one is not able to convert their glutamate to GABA adequately for the many reasons presented, then one ends up with excess glutamate. If they are able to convert their glutamate to GABA, then this wouldn’t be an issue. Thus, why l-theanine may be beneficial for some people and not others. It depends on whether they are able to get from glutamate to GABA.

    In regard to taurine, it’s not the same as a drug. Taurine is a nutrient the brain needs to function properly. Drugs are not needed by the brain. Drugs achieve their goal with artificial means. The brain responds to “artificial” stimulation or “over” stimulation by downregulating production and/or responsiveness of the respective neurotransmitter. Generally speaking, giving the brain nutrients it needs is not artificial or overstimulating.

    However, some people have a negative response to Taurine as well. Taurine makes me anxious, depressed, stressed, and unable to sleep – the exact opposite effect it should have. I can’t take anything, natural or not, that attempts to manipulate my neurotransmitters. They all backfire and have the opposite effect. I work with many people who have this experience. So, natural methods will not always be accepted by the brain either and may result in unexpected side-effects.


  • Admin - Cynthia Perkins June 10, 2015, 3:18 pm

    HI Andrew,

    No I wouldn’t. Reuptake inhibitors ultimately lead to more depletion as well.


  • Admin - Cynthia Perkins June 10, 2015, 3:38 pm

    Yes, lithium can reduce glutamate. That is why it is effective in bipolar disorder. But you should be working with a knowledgeable practitioner.


  • Maureen July 10, 2015, 12:49 pm

    Awesome article! This kind of information is very hard to find anywhere…very cutting-edge. I was wondering more about the role that magnesium plays…particularly considering that 80% of the population is magnesium deficienct. I know it is critical in regulating the excitotoxin calcium in the cell, but I was wondering if it has any roles in protecting the cells from glutamate, aspartate, and all other excitotoxins. Does it play a role in GABA production? It certainly has helped my body and mind calm down.
    Thanks Cynthia!

  • Jia July 13, 2015, 3:57 pm

    Fascinating article. I will read it several times to properly digest all the intricate connections. It is inspiring to have this information. Thank you.

  • Jane Meyer July 13, 2015, 3:59 pm

    I am a great fan of your blog, and would like to work with you on neurotransmitter problems. It seems like I have all the other issues that you have spoken about, e.g., Candida, mercury, stress, gut problems, etc. What neurotransmitter test do you use, and how would I work with you? Jane Meyer

  • Admin - Cynthia Perkins July 18, 2015, 9:03 pm

    Hi Jane,

    I use neurotransmitter screening questionnaires or a variety of lab tests. However, symptoms alone can tell the story a lot of times. You can work with me be purchasing a consultation on the following page, or sending me an email.


  • Admin - Cynthia Perkins July 18, 2015, 9:07 pm

    You’re welcome Jia. Thank you.

  • Admin - Cynthia Perkins July 19, 2015, 6:03 pm

    Hi Maureen,

    Thank you and you’re welcome. Magnesium is vital for more than 300 biochemical reactions in the body, including energy production, regulating blood sugar, neurotransmitter production and function, bone strength, methylation, and cardiovascular health, to name just a few. So, it can help you feel better for a variety of reasons. Additionally, it can bind to and activate GABA receptors, which I forgot to mention above, so I have added that. Magnesium can also lower cortisol levels, which would cause relaxation as well if levels are elevated. Since it helps improve methylation, this would have a relaxing effect too, as it will reduce the excitatory neurotransmitter norepinephrine. Additionally, methylation is involved in numerous other pathways and reactions that could be improved including GABA balance.


  • Lisa July 25, 2015, 3:34 pm

    Great article I will try eating less broth. I’ve been on very special diets for many years. Since GABA works for me, I was concerned about my blood brain barrier integrity when I listened to the Digestion Sessions interview that you referenced and you may already know, but Dr. K & Sean discuss it more in Volume 3 the Depression sessions “How to Find the Root Cause of Your Depression: A Clinical Perspective” Also, are you familiar with using guaifenesin for fibromyalgia per Dr. St. Amand’s protocol? This is a good link connecting oxalate with fibromyalgia.

  • Pa Abdou jagne July 28, 2015, 7:36 pm

    Hi Cynthia, does spirulina or ashwagandha help in increasing GABA levels

  • Maria July 30, 2015, 8:04 am

    I am confused where you say that some people might benefit from supplementing directly with GABA which is what Amy Yasko recommends as a first step… because you also say that any effect, positive or negative, from GABA supplement means there is a leaky gut b/c GABA molecules cannot break the blood-brain barrier. So, does this mean that supplementing with GABA will only be beneficial if you have a leaky gut?

  • Andrew August 3, 2015, 2:42 pm

    Does guar gum increase glutamate? If so, do you have a citation for that?

  • Delaine August 10, 2015, 2:44 am

    Fantastic article – thank you so much!

    Which source of magnesium would you suggest? Would magnesium-glycinate be problematic in regards to glutamate?

  • Vrezh Ayrapetyan September 7, 2015, 12:48 am

    Hi Cynthia!
    My name is Vrezh Ayrapetyan and I am a licensed Clinical Psychologist. I work with many people that have Anxiety Disorders. Your article was extremely helpful. No where I have read it explained so thoroughly, I mean the interconnectness of neurotrasmitters. I want to say Thank You for such a great article. I really appreciate Your article. Very-very important and informative.
    Best, Vrezh A.

  • Admin - Cynthia Perkins September 8, 2015, 12:50 pm

    Hi Vrezh,

    Your welcome and thank you. Glad to be of help.



  • Admin - Cynthia Perkins October 15, 2015, 5:17 pm

    Hi Lisa,

    Thanks for the additional info on Dr. K. Yes, I am familiar with guaifensin, but don’t really support that route. Yes, oxalates can be one contributor for fibromyalgia. My oxalate page can be found here

    SIBO is often involved in FB as well, which can read about on the following page


  • Admin - Cynthia Perkins October 15, 2015, 5:27 pm

    Hi Pa Abdou,

    Spirulina may help with GABA, but it contains glutamic acid, which means that people who have problems as discussed on this page in converting glutamate into GABA may have an increase in glutamate instead of GABA. Ashwaganda stimulates GABA receptors, which could be beneficial at first, but this could lead to dependence and tolerance and withdrawal and worsening of the condition (similar to benzodiazepines).


  • Admin - Cynthia Perkins October 15, 2015, 5:36 pm

    Hi Maria,

    Yes, that is correct. If one has any response to GABA supplementation (positive or negative) it indicates leaky gut. You can learn about this in the work of Dr. Kharrazian.




  • Admin - Cynthia Perkins October 16, 2015, 11:14 am

    Yes, Andrew, according to Dr. Amy Yasko, (glutamate expert) guar gum can increase glutamate levels.

    You can read about it on the following page



  • Admin - Cynthia Perkins October 16, 2015, 11:27 am

    Hi Delaine,

    Dr. Amy Yasko recommends magnesium citrate in a lot of cases, but it depends on other factors that may be involved and the goal one is trying to achieve. Magnesium glycenite could be problematic for the person with excess glutamate, because glycine can, in some cases, increase glutamate.





  • Alaister Copland November 8, 2015, 7:58 am

    An excellent article. However, the vitamin K derived from leafy greens is K1 and has no effect on calcium metabolism, whereas the the vitamin K that works synergistically with vitamin D3 and vitamin A for correct calcium metabolism is K2, the MK-4 form of which is obtained from eating dairy, such as brie and camembert cheeses, eggs and other animal products, while the MK-7 form comes from fermented products such as natto, sauerkraut, etc. As fermented foods are excitotoxins and as it’s difficult to obtain sufficient K2 from dairy products due to soil depletion and poor animal feeding practices, supplementation is almost always necessary to obtain sufficient levels of K2.

  • Travis Kutzorik December 15, 2015, 1:25 pm


    This was a very interesting read! I have some questions. My naturopath says I have low GABA levels. She has prescribed me taurine, magnesium, and just about everything else you mentioned. So far, i haven’t noticed any long term effects, and I’ve been seeing her since April.

    Now she is thinking I may have Lyme Disease. However, I am skeptical, as I don’t have any of the physical signs of Lyme. But I remember you said that Lyme may increase glutamate levels.

    Might I simply have naturally high glutamate? She didn’t address the glutamate aspect with me in great detail.

    Thanks and have a great holiday season,


  • Admin - Cynthia Perkins December 18, 2015, 8:53 pm

    Hi Travis,

    Well, I’m sorry, but there is no way for me to know. Lyme or Candida or any other microbe can cause an elevation in glutamate.

    On the other hand, it is possible that you lean towards having naturally higher levels of glutamate.

    I can’t really say.

    Be sure you’re doing all the other stuff mentioned above in addition to the supplements. In my experience the most results are seen by changes in diet and lifestyle, rather than supplements.



  • gseattle December 19, 2015, 6:18 pm

    Compliments to Cynthia Perkins on this comprenhsive article.

    I’m going to dig into GAD further then.

    Also recent article/study finds that Toxoplasma basically eats (my words) GABA. Search for toxoplasma gaba signaling.
    It is in (or the antibodies are found in) at least 1/3 of the world’s population according to one source.
    Everybody repeats the false meme that Toxoplasma can’t harm you unless pregnant or sick. The healthy lab mice who had their brains rewired by it to like the smell of cats all disagreed with that notion when interviewed inside the cat’s stomachs. It affects human behavior, making mates dissatisfied with each other for example, picked up from undercooked meat.

  • Nic January 3, 2016, 11:20 pm

    This has been such a terrific article Cynthia – many thanks for the no BS approach and deeply informing delivery.

    May I ask, how long should one expect to re-store a balanced level of both GABA and glutamate? Does this healing time increase when one has gone through a prolonged period of imbalance, or when the imbalance is quite large?


  • Sue January 4, 2016, 9:09 am

    Every time I re-read your superb paper, Cynthia, I glean more and more invaluable info from it.

    What is the mechanism whereby iodine helps support a positive GABA-glutamate balance?

    Thanks very much.


  • Admin - Cynthia Perkins January 10, 2016, 3:29 pm

    You’re welcome Nick. Well, there is no way to say. Could be different for everyone. For one, it may be a short period, yet for another, it may be a life-long issue, depending on what all is involved. Yes, the complexity of the situation, length of time present and degree of imbalance could all affect healing.



  • Admin - Cynthia Perkins January 10, 2016, 3:57 pm

    Hi gseattle,

    Thank you.

    Yes, I have read about Toxoplasma before and forgot about it. Thanks for reminding me. It is fascinating. However, it doesn’t “eat” GABA. It actually may increase GABA production too much or destroy GABA receptors and it uses GABA to disseminate through the brain. They are still learning about it, so its not completely clear all the effects it has or how it is achieving them. Either way, it certainly has an affect on the GABA system. It also hijacks immune system. You can read about it on the following pages.

    For those of you who are not familiar with toxoplasma, it is a parasite that you can get from your cat or undercooked meat.

    Tapeworm can get in the brain too, which you can read about here.



  • Rachel January 21, 2016, 8:40 am

    Amazing article. So informative. Can’t wait to forward to everyone I know… This is me!!!

  • PC February 24, 2016, 8:01 pm

    Excellent article. The most helpful I’ve found on reducing glutamate. Thanks!!

  • Admin - Cynthia Perkins March 9, 2016, 6:06 pm

    Hi Sue,

    I apologize for the late reply. I had put this aside to come back to at another time, and it got lost in the shuffle.

    I’m also sorry that I don’t have an explanation for how iodine helps. I took that info from Amy Yasko’s book. It appears that it helps with the calcium/magnesium balance, but that’s all I know. You could try reaching out to Amy for a more thorough explanation.

    Thank you. I’m glad you found the article informative. I’m always in the learning process with this complex issue.



Leave a Comment